2021 **BIOLOGY** (Theory) Fufi Marks - 70 Time - 3 Hours

General Instructions:

- All questions are compulsory. (i)
- Please write down the serial number of the question before attempting it. (ii)
- (iii) Marks for each question are indicated against it.

		1 the 11	SECTI	ON-A	•	
۱.	Cho	ose the corre	ct answer:		* * *	5×1=5
	(a)	A flower tha	nt has only stamens is a -		8	T.S.
7		(i) unisex	ual flower	(ii)	bisexual flower	
		(iii) compl	ete flower	(iv)	neuter flower	3.
	(b)	Which of th	e following is a starting o	odon?	3	
		(i) UAA		(ii)	UAC	
		(iii) AUG		(iv)	UUU	80
E7	(c)	The word pa	athogen refers to -		ä	Ÿ.
	0.	(i) health	y living o rganis m	(ii)	cultured micro-organism	la:
		(iii) inocul	ated organism	(iv)	disease causing organism	ĺ
	(d)	Biogas is ma	ainly –			
		(i) O ₂		(ii)	co ₂	
		(iii) N ₂		(iv)	CH ₄	
	(e)	Select the st	atement which best expla	ains parasitis	m –	4
		(i) One or	rganism is benefited		\$\$ \$\display\$	
	_62	(ii) Both t	he organisms are benefit	ed		
	¥ĕ	(iii) One o	rganism is benefited, oth	er is not affec	cted	
	×3	(iv) One o	rganism is benefited, oth	er is affected	4	

2. Fill in the blanks: (a) Biodiversity increases from the ______ to the equator. The edible portion of apple is fleshy _ (b) (c) Oparin suggested the formation of clusters or specialised droplets called _ (d) A sequence of nitrogenous bases that code for an amino acid is called _ Normal value of Dissolved Oxygen (D.O) in water bodies is _____mg/litre. State whether the following statements are True or False: 3. $4 \times 1 = 4$ Western Ghats and North-East are the most biodiversity rich zones. (a) Memory cells produce antibodies or kill infected cells. (b) Self pollination is also known as xenogamy. (d) Estrogen is secreted by Graafian follicle. SECTION - B Write any two points of difference between Ectotherms and Endotherms. 4. 2 5. What is biopatent? Which countries can award biopatents? 1+1=2Name the indicator species for highly polluted water. Also explain what is meant by biological 6. magnification. 7. What is Cancer? Write any two points of differences between malignant and benign tumour. 1+1/2+1/2=2 Why is the fern Azolla frequently grown with rice crop?

2 1+1=2
1+1=2
2+1=3
1+1+1=3
3
1+2=3
1+2=3
2+1=3
3
y are these two
1+1+1=3
1/2+1+11/2=3
our blind male.
2+1=3
3+2=5
to treat SCID
1+2+2=5
P.T.O.

21. (a) What is transcription? Explain the sequence of events during transcription. Why are both the strands of DNA not copied during transcription? 1+2+2=5

OR

- (b) What is evolution? Explain Darwin's theory of evolution by Natural Selection. 1+4=5
- 22. (a) Describe the structure of a pollen grain and draw neat labelled diagrams of pollen germination. 3+2=5

OR

(b) Describe the structure of a human ovum with a diagram. Also write down any four points of differences between spermatogenesis and oogenesis.

3+2=5

4

2021

CHEMISTRY

(Theory)

Full Marks - 70

Time - 3 Hours

General Instructions:

- (i) All questions are compulsory.
- (ii) Marks for each question are indicated against it.
- (iii) Use log tables if necessary.
- (iv) Use of calculator is not allowed.
- 1. Aldehydes and ketones can be distinguished by -

1

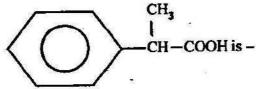
(a) Tollen's reagent

(b) Sodium bicarbonate test

(c) FeCl, solution

- (d) Carbylamine test
- 2. Which of the following amine give carbylamine test?

1


1

(a) $C_2H_5NH_2$

(b) $(C_2H_5)_2NH$

(c) $(C_2H_5)_3N$

- (d) CH₃NHC₂H₅
- 3. The IUPAC name for CH₂=CHCH₂NHCH₃ is -
 - (a) N-methylprop-1-en-3-amine
 - (b) N methylprop 2 en 1 amine
 - (c) 4 aminebut -1 ene
 - (d) 4 aminepent -1 ene
- 4. The IUPAC name of the compound

(a) 2 - methylbenzoic acid

(b) 2 - methyl - 2 - phenylethanoic acid

(c) 2-phenylpropanoic acid

(d) 2 - phenylethanoic acid

5.	At high altitudes, the boiling point of water d	ecreases	because –	1
	(a) the atmospheric pressure is high	(b)	the atmospheric pressure is lo	w
3	(c) the temperature is high	(d)	the temperature is low	
6.	The colligative properties of a dilate solution	depend	on –	1
	(a) nature of the solute	(b)	nature of the solvent	
	(c) number of solute particles	(d)	molecular mass of solute	2
7.	The half life period for a first order reaction	is 693 se	c, its rate constant is -	1
	(a) 10^3 s^{-1}	(b)	10 s ⁻¹	
	(c) 10^{-3} s^{-1}	(d)	10 ⁻⁴ s ⁻¹	n
8.	The unit of rate constant for a zero order read	ction is -		I
	(a) $\operatorname{mol} L^{-1} s^{-1}$	(b)	s ⁻¹	
	(c) L mol -1 s-1	(d)	L ² mol ⁻² s ⁻¹	
9.	Blue colour of the sky is due to -		W S	1
60	(a) refraction of light	(b)	scattering of light	
	(c) transmission of light	(d)	absorption of light	
10.	The structure of XeF ₄ is -	29		1
	(a) Square planar	(b)	Octahedral	
	(c) T-shaped	(d)	Tetrahedral	
11.	Electrolytic conduction -		**************************************	1
	(a) is carried by movement of ions			
	(b) is carried by movement of electrons	2/		
	(c) decreases with increase in temperature			
	(d) involves no change in chemical propert	ies of the	conductor	83
12.	The principal oxidation state of lanthanoids is	-	18	1
	(a) +2	(b)	+3	
	(c) +4	(d)	45	
13.	The number of unpaired electrons in Fe ³⁺ is -	- 3		1
	(a) 2	(b)	3	
	(c) 4	(d)	5	
14.	The hydrolysis products of sucrose is -			1
	(a) Fructose + Fructose	(b)	Glucose + Glucose	
S. E. S.	(c) Glucose + Galactose	(d)	D-Glucose + D-Fructose	8
15.	Why is methylamine a stronger base than amn	nonia?		2

		*
		HSS/022
16.	(a) Write a short note on Clemmensen reduction.	2
	OR	
	(b) Write a short note on Stephen reduction.	2
17.	What are the conditions causing Frenkel defects?	2
18.	Explain why nitrogen exists as diatomic molecule and phosphorus exists as tet	raatomic
	molecule.	. 2
19.	Write the mechanism of hydration of alkenes.	2
20.	Explain why the para isomer of dichlorobenzene has a higher melting point than of	ortho and
	meta isomer.	2
21.	Why do phenols have higher boiling point than toluene?	2
22.	Write a short note on Friedel Craft's acylation.	2
23.	Write a short note on Reimer Tiemann reaction.	2
24.	Write the chemical reaction for the conversion of propan-1-ol to propan-2-ol.	2
25.	Write the reaction for the conversion of benzene to benzaldehyde.	2
26.	Write three differences between physical adsorption and chemical adsorption.	3
27.	What is Lanthanoid contraction? Write two consequences of Lanthanoid contraction	on. 3
28.	On the basis of Valence Bond Theory, explain the hybridisation, geometry and a	nagnetic
-	behaviour of Fe(H ₂ O) ₆ ³⁺ .	3
29.	Hexaaquamanganse (II) ion contains five unpaired electrons, while hexacyanomang	anese
	(II) ion contains only one unpaired electron. Explain using Crystal Field Theory.	3
30.	Distinguish between globular proteins and fibrous proteins.	. 3
31.	A metal having atomic mass 50g mol ⁻¹ has a body centered cubic crystal structure. Th	e ' density
	of metal is 5.96 g cm ⁻³ . Find the volume of the unit cell.	3
32.	The boiling point of benzene is 353.23K. When 1.80 g of non-volatile solute was d	
93	in 90g of benzene, the boiling point is raised to 354.11K. Calculate the molar ma	
	solute. (K _b for benzene is 2.53K kg / mol)	3

33.	(a)	The	thermal decomposition of a compound is of first order. If 50% of the compound	d is
	W-18 (1) #1.	deco	omposed in 120 minutes, how long will it take for 90% of the compound	l to
	7))		empose?	3
	1		OR	<u>))</u> ((
	(b)	The	three fourth of a first order reaction is completed in 32 minutes. What is the	
	1 -7		life period of the reaction?	3
34.	(a)	(i)	Can we store copper sulphate in a vessel made of iron? Justify your answer.	2
98		(ii)	Calculate the resistance of 0.01N solution of an electrolyte whose equival	ent
PS.	%		conductivity is 420 ohm ⁻¹ cm ² equiv ⁻¹ . (The cell constant of the cell is 0.88 cm	
				3
30			OR .	Ye
	(b)	(i)	Why is the alternating current used for measuring the resistance of an electroly	ytic
18	- 5 5	S/15/	solution?	2
		(ii)	Calculate the e.m.f of the cell in which the following reaction takes place.	
*			$Ni_{(s)}+2 Ag^{+}(0.002M) \rightarrow Ni^{2+}(0.160M) + 2 Ag_{(s)}$	
			Given that the standard electrode potential of the cell is 1.05 V.	3
35.	(a)	(i)	Fluorine exhibits only -1 oxidation state whereas other halogens exhibit posit	tive
18			oxidation states such as +1, +3,+5 and +7. Explain.	2
		(ii)	SOCl ₂ act as Lewis acid as well as Lewis base. Explain.	3
80			OR	
6 34	(b)	(i)	Why does OF not exist but SF exist?	2
	(-)	(ii)	Explain why the electron gain enthalpies of halogens are largely negative.	3
	49	(**)	Diplom 11. June 11. State of the state of th	

2021 COMPUTER SCIENCE (Theory) Full Marks – 70

Time: 3 hours

Gen	eral ii	nstruc	ctions:		
(i)	All q	uestic	ons are compulsory.	32	W:
(ii)	Prog	ramn	ning Language : C++.		
(iii)	Figu	ires in	the margin indicate marks.	? -	<u> </u>
1.	Cho	ose th	e correct answer:		5×1=5
	(a)	The	full form of URL is-		
		(i)	Uniform Resource Locator	(ii)	Universal Resource Locator
		(iii)	Universal Resource Language	(iv)	Uniform Resource Language
	(b)	A me	ember function of a class is also cal	led a	
		(i)	Method	(ii)	Property
		(iii)	Class	(iv)	Signature
	(c)		rloaded functions have same name l	out differe	ent—
		(i)	Protocol	(ii)	Return type
	•	(iii)	Names	(iv)	Signature
	cture is called –				
	2.00	(i)	Sorting	(ii)	Traversal
		(iii)	Searching	(iv)	Merging
	(e)	Nun	nber of rows in a relation is known a	as	•
		(i)	Tuples	(ii)	Attributes
		(iii)	Cardinality	(iv)	Degree
2.	Fill	in the	blanks:	63	5×1=5
	(a)		gate is a gate with only D/NOT)	one inpu	t signal and one output signal. (OR

Н	S	S	10	1	ß
	J		ľV	9	u

16	9	HSS/016
(b)	Today's internet has evolved from of US De (ARPANET/H.T.T.P/WAN)	
(c)	A constructor that takes no argument is (Nu constructor / Copy Constructor)	ill constructor/Default
	Which data type is used to represent a number having a fraction float / void)	nal part (int/
(e)	AND operator performs an operation of boolean algebra cal multiplication / logical addition / logical subtraction)	8
3. State	e whether the following statements are True or False:	4×1=4
(a)	A candidate key which is not primary key is alternate key.	
(b)	Linear search can work for only sorted arrays.	
(c)	Stack is a LIFO (Last In First Out).	
(d)	The pattern of interconnection of nodes in a network is proto	col.
4. Ansv	wer the following questions.	13×2=26
(a)	Why is char often treated as integer data type?	
(b)	Given the two following expression:	
an an	(i) $val=3$;	
	(ii) $val = 3$;	**
	Answer the following questions.	**
	(i) How are these two different?	
	(ii) What will be the result of the two if the value of 'val' is	5 initially?
(c)	Why is main function special in C++?	9.5
(d)	What is a base class and a derived class?	
(e)	(i) What is the disadvantage of using inline function?	
•	OR	
	(ii) What is the advantage of using inline function?	
(f)	State condition(s) under which binary search is applicable.	
(g)	(i) What is a default constructor?	
t-sii	OR	
Ŕ	(ii) What is a destructor?	P
(h)	Can a particular array (say a dynamic array) contain integer	s, float and characters?
	Explain to support your answer.	
(i)	What are the various data models available for database syste	
(j)	(i) What is meant by candidate key in a table? Give a suital	ole example of candidate
19	keys from a table containing some meaningful data.	
HSS/016	3 2	Contd.

- (ii) What is meant by primary key? Give a suitable example of primary key from a table containing some meaningful data.
- (k) Explain the concept of private visibility modes in context of Object Oriented Programming.
- (1) How do repeaters differ from routers in terms of functionality?
- (m) (i) In Boolean Algebra, verify using truth table that X+XY=X for each X,Y in {0,1}

OR

(ii) Prepare a table of combinations for the boolean algebra expression: \overline{X} , \overline{Y} + \overline{X} , Y

5. Answer the following questions:

 $10 \times 3 = 30$

- (a) Illustrate the concept of default argument of a function using a suitable example program.
- (b) Discuss the concepts of Object Oriented Programming language. How are these implemented in software terms in C++?
- (c) (i) What is copy constructor? Explain with an example.

OR

(ii) Define a class student with the following specifications:

private members of the class student:

admno

integer

sname

20 character,

eng, math, science

float

total

float

ctotal ()

A function to calculate eng+math+science

public member functions of the class student:

takedata()

A function to accept values for sname, eng, math,

science and invoke ctotal () to calculate total

showdata()

A function to display all the data members on

the screen.

(d) (i) Illustrate the concept of function call by reference with suitable example.

OR

(ii) Explain all the fundamental data types in C++.

HSS/016

3

(e) (i) A 2-D array defined as A [4...7, -1...3] requires 2 words of storage space for each element. If the array is stored in row-major form, calculate the address of A [6, 2] given the base address as 100 (one hundred).

OR

- (ii) X is 2-D array [10×5]. Each element of the array is stored in 2 memory locations. If X [1,1] begins at address 150, find the location of X [3,4]. Use the formula for calculation. (The arrangement is in row-major).
- (f) Explain the efficiency of linear search and binary search in relation to the number of elements in the list being searched.
- (g) Reduce the following Boolean expression using K-Map:

$$F(A, B, C, D) = \sum (0, 1, 2, 4, 5, 8, 9, 10, 11)$$

- (h) What are the different types of network topologies?
- (i) Mention and explain at least three characteristics of destructors.
- (j) Consider the following table and write SQL commands for statements (i) to (iii)

NO	NAME	TDATE	KM	CODE	NOP
101	RINA	13/11/2015	200	101	32
103	SIAMA	21/4/2016	100	103	45
105	PUIA	23/3/2016	350	102	42
102	LIANI	13/2/2016	90	102	40
107	THARA	10/1/2015	75	104	2
104	BENA	28/5/2016	80	105	4
106	ENGI	6/2/2016	200	101	25

TABLE: TRAVEL

- (i) To display NO, NAME, TDATE from the table TRAVEL in descending order of NO.
- (ii) To display the NAME of all travellers who are travelling by vehicle with CODE 101 or 102.
- (iii) To display all the data from the table TRAVEL.

2021
ENGLISH
(CORE)
Full Marks - 80
Time - 3 Hours

General Instructions:

- (i) The paper is divided into three sections: A,B & C. All the sections are compulsory.
- (ii) Separate instructions are given with each section and question wherever necessary. Read these instructions very carefully and follow them.
- (iii) Do not exceed the prescribed word limit while answering the questions.
- (iv) Marks for each question are indicated against it.

SECTION -A: Reading (15 marks)

1. Read the following passage carefully and answer the questions that follow:

The word 'depressed' in common usage means sad, frustrated, fed up, bored or pessimistic. The mood of a depressed person is much lower at his or her worst moments than the mood of a normal person at his or her worst. Depression is a state of mind. It is specifically a mental disorder characterised by a lowering of the individuals' vitality, his mood, desires, hopes, aspirations and of his self-esteem.

Depression arising out of environmental factors is called reactive depression whereas depression arising out of some biochemical changes in the brain is called endogenous depression. If depression is mild or moderate and if the individual is in touch with his surroundings, it is known as neurotic depression. If the individual is severely disturbed and is not able to comprehend what is happening around, he can be said to be in a state of psychotic depression.

Old age is one of the stages of human development where a person attains wisdom, maturity, social and economic stability with social recognition and emotional fulfilment. Generally, societies show a great respect and consideration for the aged. In ancient times, old people were considered as the guiding stars in Indian families, since they were symbols of tradition, respect, wisdom and experience. In primitive, ancient and medieval cultures, old persons had a recognised social role. They were of a great value because they could impart knowledge and skill to youngsters. The old people were considered as repositories of wisdom and tradition and were not perceived as problems.

At present, social structures and values are undergoing transformation from traditional to modern. There is a rapid stride in urbanization and industrialization leading to the breaking up of joint families and property. This has ultimately weakened the traditional families, social position and status of the aged in the family. From time to time, changes in the institutions of marriage and family have diminished the control of parents over their children. It has increased the freedom of children and they view the aged as a useless and non-productive entity. Modernisation has eventually led to the degradation of their status and authority. Consequently, the integrity of the family and the existence of the elderly as an integral part of the family are being uprooted. The importance of their functional positions thus decline and consequently their authority and much of the respect and prestige that they enjoyed earlier get faded. These changes generally bring about depression in older people.

As the old age advances, events at home may also contribute more to their problems. The 'empty nest' feeling arising as a result of the grown-up children leaving the home, daughters departing as a result of wedlock and sons leaving station in pursuit of higher education or jobs may make the aged more lonely.

The loneliness also arises out of premature loss of spouse. This would deprive the person of a long-standing emotional bond that had provided plenty of emotional succour and security. The loss, wherever it might occur in the later years, may leave the individual terribly lonely and at the mercy of sons and daughters-in-law. Added to these, the increasing gap and interactional stress and strain in the family may leave the elderly without peace of mind. The elderly as a result of these developments feel marginalized, alienated and left out of the mainstream. The foregoing are the common problems faced by most of the elderly. These either directly or indirectly lead to a state of depression and make aging for many an unwanted and unpleasant event to be abhorred.

Usually, the mild depression which is caused due to environmental factors is temporary. The person reconciles within a short time and tries to forget the loss. Kind words and timely support of friends, relatives and members of the family help one recover from depression.

Based on your understanding of the passage, answer the following questions: $2 \times 2 = 4$

- A. Based on your understanding of the passage, answer the following questions (a) What are the causes for the disintegration of the joint family system?
 - (b) How does one recover from mild depression?
- B. Select the appropriate answer from the given options:
 - (a) Reactive depression arises out of-
 - (i) environmental factors
 - (ii) biochemical changes in the brain
 - (iii) emotional factors
 - (iv) disintegration of joint family system

Contd.

 $2 \times 1 = 2$

- (b) The status of the old people in ancient time was -
 - (i) not recognised by society
 - (ii) valued and recognised by society
 - (iii) valued and recognised by the old people
 - (iv) not recognised by the youth
- C. Choose the correct word from the given options which conveys similar meaning to the following:

 $2 \times 1 = 2$

- (a) To feel that they do not belong to a group.
 - (i) abhorred
 - (ii) alienated
 - (iii) diminished
 - (iv) uprooted
- (b) A husband or wife.
 - (i) daughter-in-law
 - (ii) elderly
 - (iii) spouse
 - (iv) youngsters
- 2. Read the following passage and answer the questions that follow:

Consumerism is economically manifested in the chronic purchasing of new goods and services, with little attention to their true need, durability and product origin or the environmental consequences of manufacture and disposal. Consumerism is driven by huge sums spent on advertising designed to create both a desire to follow trends, and the resultant personal self reward system based on acquisition. Materialism is one of the end results of consumerism.

Consumerism interferes with the workings of society by replacing the normal commonsense desire for an adequate supply of life's necessities, community life, a stable family and healthy relationships with an artificial ongoing and insatiable quest for things and the money to buy them with little regard for the true utility of what is bought. An intended consequence of this, promoted by those who profit from consumerism, is to accelerate the discarding of the old, either because of lack of durability or a change in fashion.

It is often stated that the economy would improve if people just bought more things, bought more cars and spend more money. Financial resources better spent on social capital such as education, nutrition, housing etc. are spent on products of dubious value and little social return. In addition, the purchaser is robbed by the high prices of new things, the cost of the credit to buy them, and the less obvious expenses such as, in the case of automobiles, increased registration, fees, insurance, repair and maintenance costs.

Many consumers run out of rooms in their homes to store the things that they buy. Arapidly growing industry in America is that of self-storage. Thousands of acres of land, good farm land, are paved over every year to build these cities of orphaned and unwanted things so as to give people more room to house the new things that they are persuaded to buy. If these stored products were so essential in the first place, why do they need to be warehoused? An over-abundance of things lessen the value of what people possess.

Malls have replaced parks, churches and community gatherings for many who no longer even take the trouble to meet their neighbours or care to know their names. People move frequently as though neighbourhoods and cities were products to be tried out like brands of deodorant. Consumerism sets each person against themselves in an endless quest for the attainment of material things or the imaginary world conjured up and made possible by things yet to be purchased. Weight training, diet centers, cosmetic surgery, permanent eye make-up, liposuction, collagen injections, these are some examples of people turning themselves into human consumer goods more suited for the 'marketplace' than living in a healthy balanced society.

- (a) On the basis of your reading of the passage make notes on it using recognisable abbreviations wherever necessary. Supply a suitable title to it.
- (b) Write a summary of the above passage in about 80 words.

SECTION - B: Writing (25 marks)

- 3. You are Mawia of Chanmari, Lunglei. You want to sell your computer set as you are shifting to another place for work. Draft a suitable advertisement to be published in a daily newspaper in not more than 50 words.
- 4. As the Secretary of the Student Council, Z.S. Memorial Higher Secondary School, Lunglei, write a notice in not more than 50 words asking the students of your school to donate old clothes, books and bags for the underprivileged children. Sign yourself as Mawizuali.
- 5. (a) You are Lianmawia/Lianmawii of Y-02, Chaltlang, Aizawl. You have seen an advertisement in 'Vanglaini' inviting applications for the post of English Lecturer in Fairdale Higher Secondary School, Kawnpui, Mizoram. Write a letter in response to the advertisement. Also give your detailed bio-data.

OR

Contd.

- (b) You are James, H/No-007, Dawrpui, Aizawl. Recently you bought a mobile phone from 'The Phone Shop', Bazar Bungkawn, Aizawl. The mobile phone developed a problem within a week of purchase. Write a letter to the manager of the shop giving details about the nature of the problem and asking him to either rectify the defect or to replace the phone.
- (a) You have recently attended a symposium on the topic 'Effect of Pollution on Quality
 Life'. As the Editor of your school magazine, write a report on the event for your school magazine. You are Lalhlima, Holy Heart Higher Secondary School, Kolasib.
 5
 (Word limit 120 words)

OR

(b) The Cancer Society of Mizoram recently organised a 'No Tobacco' workshop in your school in order to create awareness regarding the harmfulness of tobacco products among school children. Write a report on the same to be published in the newspaper in about 120 words.

SECTION - C: Literature (40 marks)

7. Read the following extract and answer the questions that follow:

 $4 \times 1 = 4$

- I. Life is what it is about;
 I want no truck with death.
 If we were not so single-minded about keeping our lives moving, and for once could do nothing, perhaps a huge silence might interrupt this sadness
 - (a) 'Keeping Quiet' is written in blank verse by -
 - (i) Stephen Spender
 - (ii) Pablo Neruda
 - (iii) Louis Fischer
 - (iv) John Keats

- (b) 'Keeping Quiet' is a simple poem about -
 - (i) greed
 - (ii) not speaking in any language
 - (iii) self introspection
 - (iv) relaxing
- (c) Man is 'single-minded' about -
 - (i) being a better human being
 - (ii) his own selfish motives
 - (iii) helping his brothers
 - (iv) total inactivity
- (d) The 'sadness' refers to -
 - (i) man not understanding his fellow man
 - (ii) man not working
 - (iii) the killing of whales
 - (iv) man not keeping quiet

OR

- II. Driving from my parent's home to Cochin last Friday morning, I saw my mother, beside me, doze, open mouthed, her face ashen like that of a corpse and realised with pain that she was as old as she looked but soon put that thought away...
 - (a) The name of the poem and the poet is -
 - (i) My Mother at Sixty Six Kamala Das
 - (ii) A Thing of Beauty John Keats
 - (iii) Keeping Quiet Pablo Neruda
 - (iv) An Elementary School Classroom in a Slum Stephen Spender
 - (b) The poet was going
 - (i) for a ride
 - (ii) to visit her friend
 - (iii) to Cochin Airport
 - (iv) to her parents' house

HSS/001

6

Contd.

 $4 \times 1 = 4$

- 16. - 22	(c)	The poet's mother looked -	
	(0)	(i) young and sweet	
4			¥
		(ii) pale as death	
		(iii) active and lively	
	<i>c</i> 15	(iv) worried and sick	
	(d)		
	•	(i) her mother will live long enough	
		(ii) her mother will survive her pain	#
	5%	(iii) her mother won't mind her driving	# 1
		(iv) her mother won't live long	
8.	Ans	swer the following questions in about 30 words:	$3 \times 2 = 6$
*	(a)	What is the theme of the poem 'An Elementary School Classroom in a Slum	'?
	(b)	What does a thing of beauty do for us?	
X	(c)	How, according to the poet, Pablo Neruda, can the earth teach us?	
9.	Ans	swer the following questions in about 30 words:	4×2=8
ì	(a)	What is ironical about Saheb's name?	
174	(b)	When did Douglas' aversion to water begin?	89
12	(c)	What did Franz wonder about when he entered the class that day?	
	(d)	Why did Gandhi chide the lawyers of Muzzafarpur?	
10.	Cho	pose the correct answer from the given options:	2×1=2
8	(a)	Douglas received training from the instructor for -	
		(i) six months	B7
		(ii) seven months	8
		(iii) five months	
:6		(iv) nine months	
	(b)	Franz saw a crowd in front of the -	
\$3		(i) saar (ii) school	. 4
		(iii) garden (iv) bulletin-board	
11.	Ansv	wer any one of the following questions in about 100 –120 words each:	s i
	(a)	What was the sense of panic that gripped William Douglas? How did he over	5
	(b)	What are the instances in 'The Rattrap' that show that the character of the iron	ome it?
额		different from that of his daughter in many ways?	naster is
			20
HSS	/001	7	P.T.O.

10	98333			•	HSS/0
12.		swer the following questions in abou	it 30 words:		2×2=
	(a)	What advice did Annan give Bama	? Why was it	so important?	
	(b)	Why did Roger Skunk's mommy	ot like her so	smelling of roses?	<i>₩</i>
13,	Ch	pose the correct answer from the give	en options:	tern de la companya d	6×1=
•20	(a)	In Zitkala's tribe, short hair was we	orn by –		
		(i) mourners	(ii)	warriors	
		(iii) the elderly	(iv)	palefaces	
	(b)	The name of the narrator's friend in	'The Third L		
		(i) Sam Warner	(ii)	Sam Weiner	8
	76	(iii) John Warner	(iv)		
	(c)	In 'The Enemy', the servants had c	leaned the gue		hur –
		(i) to get rid of any bacteria	80 Nego 81	2000 F00 400 400 400 400 400 400 400 400	en e
		(ii) to get the white man's smell	out of it		
2		(iii) to make the room smell nice	텧		3
85	8	(iv) because it was a tradition			绘
	(d)	Roger Skunk had onlyp	ennies when h	e first met the wizard	(ii)
* 18		(i) two	(ii)	five .	
		(iii) three	(iv)	four	
	(e)	Among the things that Mr. Lamb die	d to understand	and appreciate the wor	ld around
		him, which is not one of them?		C. HAR WELLOW T.	in mound
199		(i) listening	(ii)	waiting	188
		(iii) reading	(iv)	thinking	
	(f)	The General did not take action on S	adao for harbo	uring the white man beca	iuse Sadao -
	7.	(1) was sentimental		was a good friend	
		(iii) was indispensible to him	(iv)	was a patriot	
4.	Ansv	ver any one of the following question	ns in about 10	0-120 words:	9.2
	(a)	Describe the Grand Central station a	t 'The Third L	evel'.	5
			O R	K. B	•
	71. N	10)			4
	(b)	How does Jo show her independent the	ninking in the s	tory 'Should Wizard Hit	Mommy'?
			表	n n	5

2021 **GEOLOGY**

← (Theory)

Full Marks - 70

Time - 3 Hours

28222	100	<u> </u>	
C		nstructions	
STERRETUR		MALTUCHONS.	_

Gen	eral I	nstru	ctions:					
(i)	All q	All questions are compulsory.						
(ii)	Mar	Marks for each question are indicated against it.						
(iii)	Plea	ise wr	ite down the question number be	fore i	attempting it.			
1.	Cho	ose th	e correct answer:		14×1=1			
	(a)	Pele	cypods having two strong and slig	htly c	urved teeth in the hinge -			
		(i)	Heterodont	(ii)	Isodont			
		(iii)	Dysodont	(iv)	Desmodont			
	(b)	The	earliest record of fossil Lamellibr	anchs	have been traced from the rock of -			
		(i)	Quaternary	(ii)	Jurassic			
		(iii)	Ordovician	(iv)	Silurian			
	(c)	Tran	sformation of bones, shells or pla	nt tis	sues into calcite, silica or pyrite is -			
		(i)	Petrifaction	(ii)	Combustion			
		(iii)	Coalification	(iv)	Impression			
	(d)	Grap	phite minerals are usually formed	by the	e process of –			
		(i)	Sedimentary	(ii)	Magmatic			
		(iii)	Residual	(iv)	Metamorphic •			
	(e)	The	temperature of hydrothermal solu	tion is	s about –			
		(i)	500°C	(ii)	450°C			
		(iii)	350°C	(iv)	550°C			

(f)	- 3	process which result in the forr Pt, Au, Ag and Cu is –	nation of	sulphide minerals that is usually associated			
	(i)	Immiscible liquid segregation	n (ii)	Injection			
	(iii)	Dissemination	(iv)	Metasomatism			
(g)		t which appear to have been ro	tated abo	ut a point on a fault plane like a scissor is –			
	(i)	Reverse	(ii)	Thrust			
76	(iii)	Step .	(iv)	Pivot			
(h)	Faul	t with circular like outcrop on	a level su	urface –			
	(i)	Arcuate	(ii)	Radial			
	(iii)	En-echelon	(iv)	Parallel			
(i)	Horr	ny calcareous plate which clos	e the ape	rture of Gastropods –			
	(i)	Suture	(ii)	Operculum			
	(iii)	Apex	_(iv)	Whorl			
(j)	Colu	Columnar joints are usually associated with -					
	(i)	Ultrabasic rocks	(ii)	Basic rocks			
	(iii)	Intermediate rocks	(iv)	Acidic rocks			
(k)	Vado	ose water is found in the zone of	of –				
	(i)	Capillary	(ii)	Saturation			
	(iii)	Aeration	(iv)	Recharge area			
(1)	Artes	sian well can occur in -	e e				
	(i)	Perched aquifer	(ii)	Unconfined aquifer			
	(iii)	Recharge area	(iv)	Confined aquifer			
HSS/028		2		Contd.			

HSS	/028			3		P.T.O.
11.	Explain	n the i	two types of Aquifers.		8	3
10.			three types of precipitat	ion.		3
9.			e six green house gases?			3
	in foss					3
8.			e differences between un	altered soft pa	rts and unaltered hard parts p	oreserved
7.	What is the difference between umbilicus and columella in gastropods?					
6.					n normal and reverse fault.	11/2+11/2=3
5.			the importance of dip ar			11/2+11/2=3
4.			different processes of ea			1+1+1=3
3.	What miner	is sec alizat	dimentary deposits? Meion.	ention differen	t processes associated with	sedimentary 1+2=3
			e eluvial placer deposits.			
	(f)	What	is metasomatic replacen	nent?		
	(e)	What	are sheet joints?	lit.		
10	(d)	Defin	e plunging fold.			
	(c)	What	is lunule in pelecypods	?		
	(b)	Defir	ne tenor.			
	(a)	Defin	ne porosity.		39	
2.	Ansv	ver th	e following questions:			7×2=14
		(iii)	Aquifuge	(iv)	2001 	
		(i)	Aquitard	(ii)	Aquifer	
	(n)	The	rock formation which ha	ve both porosi		
		(iii)	Methane	(iv)		
		(i)	Carbon dioxide	(ii)	Water vapour	
	(m)	Whi	ch of the following is a n	atural Green I	House Gas?	

	-	-
ISS	m	20
\mathbf{o}	ľ	40

12.	(a)	Define folds. Classify folds on the basis of mechanism of folding.	15	1+4=5
-----	-----	--	----	-------

OR

(b) With neat sketches, explain the special types of folds.	(A)	1+4=:
---	-----	-------

13. (a) Explain with a labelled diagram, the morphological characteristics of gastropods. 2+3=5

OR

- (b) Explain with a labelled diagram, the morphological features of pelecypods. 2+3=5
- 14. (a) What are the factors responsible for the formation of residual concentration deposits? Give an example of deposits formed by residual concentration. 4+1=5

OR

(b) Write notes on the classification of hydrothermal deposits on the basis of temperature of formation.

2021 MATHEMATICS Full Marks – 80 Time – 3 hours

General Instructions:

- (i) All questions are compulsory.
- (ii) Marks for each question are indicated against it.
- (iii) Use of calculator is not permitted; however, you may ask for logarithmic tables if required.
- (iv) Please write down the serial number of the questions before attempting it.
- 1. Choose the correct answer from the following:

16×1=16

(a) If
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, then adj A equals to –

(i)
$$\begin{bmatrix} d & -c \\ -b & a \end{bmatrix}$$

(ii)
$$\begin{bmatrix} -d & b \\ c & -a \end{bmatrix}$$

(iii)
$$\begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

(iv)
$$\begin{bmatrix} -d & -b \\ c & a \end{bmatrix}$$

(b) The value of x for which the matrix
$$A = \begin{bmatrix} 3-2x & x+1 \\ 2 & 4 \end{bmatrix}$$
 is a singular matrix is –

(i) -1

(ii) 1

(iii) 2

(iv) - 2

(c) Let
$$f: R \to R: f(x) = x^5$$
 is -

(i) one-one and onto

(ii) one-one and into

(iii) many-one and onto

(iv) many-one and into

- The principal value of $\cot^{-1}(-1)$ is

 \cdot (ii) $\frac{\pi}{4}$

(iii) $\frac{5\pi}{4}$

- (iv) $\frac{3\pi}{4}$
- If $y = \log(\sin 3x)$, then $\frac{dy}{dx}$ is
 - cot3x

(ii) $-\cot 3x$

(iii) $-3\cot 3x$

- (iv) 3cot3x
- The tangents to the curve $y = 2x^3 4$ at the points x = 2 and x = -2 are
 - (i) parallel

(ii) perpendicular

(iii) intersecting

- (iv) with slopes zero
- (g) $\int e^x \left\{ \frac{1}{x} \frac{1}{x^2} \right\} dx$ equals to -
 - (i) $e^x \left\{ \log x + \frac{1}{x} \right\} + C$

(iii) $e^x \cdot \frac{1}{r} + C$

(iv) None of these

- (h) $\int \frac{\sin^{-1} x}{\sqrt{1-x^2}} dx$ is -
 - (i) $\frac{1}{\sin^{-1}r} + C$

(iii) $\frac{(\sin^{-1} x)^2}{2} + C$

(ii) $\frac{\sin^{-1}x}{2} + C$ (iv) $\frac{1}{\sqrt{1-x^2}} + C$

(i)
$$\int_{0}^{\pi/4} \sqrt{1+\cos 2x} \ dx \text{ is } -$$

(i) 1

(ii) $\sqrt{2}$

 $\frac{1}{\sqrt{2}}$ (iii) $\frac{1}{\sqrt{2}}$

(iv) 0

(j) The order and degree of the differential equation
$$x \left(\frac{d^3 y}{dx^3} \right)^2 + \left(\frac{dy}{dx} \right)^4 + y^2 = 0$$
 is -

(i) order = 3, degree = 4

- (ii) order = 2, degree = 3
- (iii) order = 3, degree = 2
- (iv) order = 1, degree = 4

(k) If
$$|\vec{a} + \vec{b}| = |\vec{a} - \vec{b}|$$
, then –

(i) $|\vec{a}| = |\vec{b}|$

(ii) $\vec{a} \parallel \vec{b}$

(iii) $\vec{a} \perp \vec{b}$

(iv) None of these

(1) The unit vector perpendicular to both
$$\vec{a} = \hat{i} - 2\hat{j} + 3\hat{k}$$
 and $\vec{b} = \hat{i} + 2\hat{j} - \hat{k}$ is –

(i) $-4\hat{i}+4\hat{j}+4\hat{k}$

(ii) $\frac{1}{\sqrt{3}}(-4\hat{i}+4\hat{j}+4\hat{k})$

(iii) $-\hat{i} + \hat{j} + \hat{k}$

(iv) $\frac{1}{\sqrt{3}}(-\hat{i}+\hat{j}+\hat{k})$

(m) The intercepts made by the plane
$$\vec{r} \cdot (2\hat{i} - 3\hat{j} + 4\hat{k}) = 12$$
 are –

(i) 2, -3, 4

(ii) -2, 3, 4

(iii) 6,-4,3

(iv) -6, 4, -3

(n) The equation of the plane which is parallel to the plane 2x-3y+z+8=0 and which passes through the point (-1, 1, 2) is –

(i)
$$2x-3y+z+1=0$$

(ii)
$$2x-3y+z+2=0$$

(iii)
$$2x-3y+z+3=0$$

(iv)
$$2x-3y+z+8=0$$

(o) Let A and B be the events such that $P(A) = \frac{3}{10}$, $P(B) = \frac{1}{2}$ and $P(\frac{B}{A}) = \frac{2}{5}$, then, $P(A \cap B)$ is –

(i)
$$\frac{1}{5}$$

(ii)
$$\frac{3}{20}$$

(iii)
$$\frac{4}{5}$$

(iv)
$$\frac{3}{25}$$

(p) A can hit a target 4 times in 5 shots, B can hit a target 3 times in 4 shots, C can hit a target 2 times in 3 shots, then the probability that A, B and C all hit the target is -

(i)
$$\frac{2}{7}$$

(ii)
$$\frac{1}{5}$$

(iii)
$$\frac{1}{7}$$

(iv)
$$\frac{2}{5}$$

2. Show that the relation

 $R = \{(a, b) : a > b\}$ on N is transitive but neither reflexive nor symmetric.

2

3. Show that the function

$$f(x) = \begin{cases} 1+x, & \text{if } x \le 2\\ 5-x, & \text{if } x > 2 \end{cases}$$

2

is not differentiable at x = 2.

- 4. Evaluate: $\int \frac{2x}{(x^2+1)(x^2+3)} dx$
- Two unbiased dice are thrown. Find the probability that the sum of the numbers appearing is
 8 or greater, if 4 appears on the first die.
- 6. Express the matrix $A = \begin{bmatrix} 1 & 3 & 5 \\ -6 & 8 & 3 \\ -4 & 6 & 5 \end{bmatrix}$ as the sum of a symmetric and a skew-symmetric matrix.
- 7. Using matrix, solve the following system of linear equations:

$$3x + 4y + 2z = 8$$
$$2y - 3z = 3$$
$$x - 2y + 6z = -2$$

- 8. Let $R = \{(a,b) : a,b \in \mathbb{Z} \text{ and } a-b \text{ is divisible by } 5\}$. Show that R is an equivalence relation on Z.
- 9. (a) Find $\frac{dy}{dx}$, when $y = x^{\cos x} + (\sin x)^{\tan x}$.

OR

(b) If
$$x = a(\theta + \sin \theta)$$
 and $y = a(1 - \cos \theta)$, find $\frac{d^2y}{dx^2}$ at $\theta = \frac{\pi}{2}$.

10. (a) Evaluate: $\int \frac{2x-1}{2x^2+2x+1} dx$

OR

(b) Evaluate: $\int \frac{x^2 + 1}{x^4 + 1} dx$

11. Solve: $(x^2 + 3xy + y^2)dx - x^2dy = 0$

4

- 12. (a) Find the image of the point (1, 6, 3) in the line
 - $\frac{x}{1} = \frac{y-1}{2} = \frac{z-2}{3}$

OR

- (b) Find the equation of the plane passing through the point (2, -3, 5) and parallel to the plane 3x-7y-2z=5. Also find the distance between the two planes.
- 13. Three urns A, B and C contain 6 red and 4 white; 2 red and 6 white; and 1 red and 5 white balls respectively. An urn is chosen at random and a ball is drawn. If the ball drawn is found to be red, find the probability that the ball was drawn from the urn A.
- 14. (a) Show that the semi-vertical angle of a right circular cone of a given surface area and maximum volume is $\sin^{-1}(\frac{1}{3})$.

OR

- (b) Prove that the volume of the largest cone that can be inscribed in a sphere is $\frac{8}{27}$ of the volume of the sphere.
- 15. (a) Using integration, find the area of the region bounded by the triangle whose vertices are A(-1, 2), B(1,5) and C(3,4).

OR

(b) Find the area cut off from the parabola $4y=3x^2$ by the straight line 3x-2y+12=0.

6

HSS/020

G

Contd.

- 16. Find the distance of the point (-2, 3, -4) from the line $\frac{x+2}{3} = \frac{2y+3}{4} = \frac{3z+4}{5}$, measured parallel to the plane 4x + 12y 3z + 1 = 0.
- 17. A manufacturer produces nuts and bolts for industrial machinery. It takes 1 hour of work on machine A and 3 hours on machine B to produce a packet of nuts while it takes 3 hours on machine A and 1 hour on machine B to produce a packet of bolts. He earns a profit of Rs. 17.50 per packet on nuts and Rs. 7 per packet on bolts. How many packets of each should be produced each day so as to maximize his profit if he operates his machines for at the most 12 hours a day? Also, find the maximum profit.

2021

MIZO

Full Marks - 80

Time - 3 Hours

Hriat turte:

- (i) Zawhna zawng zawng hi chhan ngei ngei tur a ni.
- (ii) Zawhna tin mark put zat chu a zawnah tarlan zel a ni.
- (iii) Chhan dawnin zawhna nambar ziah zel tur a ni.

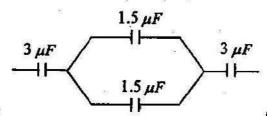
THEN KHATNA: HLA

1.	A dik ber thlang chhuak rawh:	4×1=4
	(a)duh lawm lai chân chu lung kan rual ngei ang a. (Hrai/Lung/Tua	ai)
	(b) Chung muvanlaitawng lo nen. (kawplai /di /hrai)	80
S.	(c) Chhun nipui sen sa hnuaiah, Thlir chang thinlai (hnemtu/tihlim	tu/tihnimtu)
÷	(d) Zorama leng chi tin hnam tin, hraichawi kan ni. (Chhinlung /Zor	fa/Pipute)
2.	Hausiampa'n, 'Hawilo pâr an khâl e zîng phûlah' a tih hi eng tihna nge?	2
3.	'Phengphe nunnem' tih hla phuahtu hian eng a thlirin nge 'hringnun hi ka tahp	ui țhin' a tih ?
*		2
4.	'Kar a hla' phuahtu Lalhmingthanga kha a ngaihzawng ngaia a lunglen dan tla	mgpui in zirlai
	behchhanin han ziak teh.	. 4
5.	'Pi pu chhuahtlang hlui' tih hla atang hian kan pi leh pute'n lungdawha an thil dah	hrang hrangte
	leh lungdawh an hman atangkainate han sawi teh.	2+4=6
		PTO

THEN HNIHNA: THU

6.	A d	ik ber hmangin a kar awlte dah khat rawh:	4×1=4
ě	(a)	Mizo zinga hla phuah thiam mimal hming kan hriat hmasak ber chu	a ni.
(*	2	(Laltheri / Lalvunga / Lianchia / Pi Hmuaki)	1920
	(b)	In zirlai buin thinrimna hneh dan tha ber a tih chu a ni. (ngawih r tawpa zai / inngaihtlawm leh mi ngaihdam)	eng / ring theih
	(c)	Dam chhung mi hmuak apiang i ni se. (thu/ta/tirh)	*
	(d)	Vanneihna kailawn pawimawh tak pakhat chu a ni. (rinawmna dawhtheihna / huaisenna)	/ taihmakna /
7.	Hen	g zawhnate hi chhang rawh:	2×2=4
8	(a)	Dr. C. Lalhrekima'n 'Mipui thinrim pungkhawm zingah hian an inzep ve eng nge?	thin' a tih kha
\$ \$	(b)	Khawvela hming inkawp fuh em em mai, pakhat sawi chuan a dang rilrua lo thin pahnih sawi rawh.	lo lang lo thei
8.	C.L	alsiamthanga'n hnam pawi a khawih ngei ang a tih kha eng nge ni?	4
9.	Miza	o thawnthu atangin pi leh pute thil ngaihdan, an thlir dan leh an suangtuahn	ate sawi rawh.
g	\$480 S	THEN THUMNA : LEMCHAN	6
10.	A dil	k ber thlang chhuak rawh:	2×1=2
	(a)	Thingsei atanga Lalhniangi te va pemna khua chu a ni. (Maubuan Hmuifang)	g/Neihbawi/
	(b)	'Nui hnuhnung zawk zawng kan la awm chek ang' tih thu sawitu chu	a ni.
15 16	338	(Thangzawra/Chawnghrima/Thangzuala)	*
HSS	/003	. 2	Contd.

11.	i nangzawra n vai run a chak chhan sawi la, silai neih belh a duh c	hhan sawi bawk	rawh.
34			1+1=2
12.	'Ka pa vanduaina hi a bân a sei mang e aw'. He thu hi tu sawi n	ge?Eng vangin	nge hetia a
	sawi?		1+3=4
10	77L	(8) (2)(10)(1)	
13.	Thangzawra leh Lalhniangi te inkara hmangaihna thawnthu ngaihn	-	
120	avanga lungchhiat thlak tak ni si kha ngaihnawm takin han sawi te	h.	6
	THEN LINA: GRAMMAR AND COMPOSIT	TON	
14.	A dik zawk thlang chhuak rawh:		2×1=2
	(a) Zawhte a rûm (ngal ngal / ngul ngul) mai.		(§)
9	(b) A hmai ava bawl nasa (tak tak / tek tuk) ve.	ě	8
15.	A hnuaia Tawng Upate zingah hian a thu awmze milpui thlang chh	wak rawh:	2×1=2
	(a) A tak tak ni lo, a behbawm.	3	
	(a kahna tawk a tha /a phaw vuak /chhimbu dawi / mi inang	sa inang)	19
	(b) Nei teuh; chang ṭawk; mahni chauha chang bik.		*
	(Lersia se chi tha ang/phung sa serh sem ang/mi sa hmim	tipuar/pusum	teľ)
16.	'Kaihza veng' tih hi a awmzia hrilhfiah la, a tifiah turin thu phuah i	rawh.	1+1=2
17.	Lalmuanpuia, Zonuam veng i ni a. Misualin i dawr an rawk chung	changah Vaivak	awn Police
(3	Station-a theh luh tur First Information Report (FIR) han ziak teh		4
18.	A hnuaia thupui i duh ber hmangin Essay thumal 250 velin han zi	ak teh:	6
*	(a) Hripui kara Zonun zemawi	#1	1
*	(b) Ram leh hnam humhalh		
	(c) Kan ramin kan mualphopui		
			2
HSS	1003	<u>%</u>	


THEN NGANA: RAPID READER

19.	A dik ber thlang chhuak rawh:	12	2×1=2
	(a) Sava chi khat, a hram chu pi leh puten chhiatna thlentu nia an ngaih chu_		••
	(Chhimbuk / Awingek / Tuitu / Chingpirinu)		
	(b) Hrangchhuana ipte hrui kha eng mei nge?		
	(Ngau / Keite / Zawng / Hauhuk)		
20.	Chawngmawii'n Siaia a ngaihzawn der ehhan kha sawi rawh.		2
21.	Khuai lui kha eng lui nge an tih bawk kha? Lui pawimawh tak a nihna chhan han	ı sawi	teh.
	and the state of t		1+1=2
22.	Hrangchhuana te in atanga Chawngmawii thil hawn hlut dan kha sawi rawh.		2
23.	Khuai ur nan Aidu ro hman a thatna leh Tum hnah erawh a that loh dan kha han	sawi t	teh. 2
24.	Siaia'n Hrangchhuana laka tlawm hliah hliaha a inhriatna chhan kha sawi rawh.	ž.	4

2021
PHYSICS
(Theory)
Full Marks - 70
Time - 3 Hours

General Instructions:

- (i) All questions are compulsory.
- (ii) Marks for each question are indicated against it.
- (iii) Use log table, if necessary.
- (iv) Use of calculator is not allowed.
- 1. What is the equivalent capacitance of the following circuit?

(a) $1\mu F$

(b) $2\mu F$

(c) $1.5 \mu F$

- (d) $3\mu F$
- 2. When air is replaced by a dielectric medium of dielectric constant (k), the maximum force of attraction between two charges separated by a distance
 - (a) decreases k times
 - (b) remains unchanged
 - (c) increases k times
 - (d) decreases k² times
- 3. The specific resistance of a conductor increases with -

32,035

- (a) increase in temperature
- (b) increase in cross-sectional area
- (c) decrease in length
- (d) decrease in cross-sectional area

t	15	S	/0:	21
			-	

4.	A c	current flows in a conductor	luctor from ea	st to west. Th	ne direction of the	magnetic field at a
	(a)	towards west		(b)	towards south	, a .
	(c)	towards east		(d)	towards north	(72)
5.		harge 'q' moves in a re	gion where ele	ctric field E	and magnetic field	Booth exist. Then
		force on it is –	41			1
	(a)	$q(\overrightarrow{v} \times \overrightarrow{B})$	*	(b)	$q\vec{E} + q(\vec{v} \times \vec{B})$ $q\vec{B} + q(\vec{E} \times \vec{v})$	i*
	(c)	$\vec{q}\vec{E}+q(\vec{B}\times\vec{v})$		(d)	$q\vec{B}+q(\vec{E}\times\vec{v})$	47
6.	If \overline{E}	and \overline{B} are electric a	nd magnetic fi	eld vectors o	f an electromagne	tic wave, then the
		ction of propagation of				. 1
	(a)	$\overrightarrow{E} \times \overrightarrow{B}$		(b)	\overrightarrow{E}	
	(c)	\overline{B}	×	(d)	$\overrightarrow{B} imes \overrightarrow{E}$	
7.	The	velocity of electromag	netic waves in	free space is	given by -	=1
*	(a)	. √∈ ₀ µ ₀		(b)	$\frac{1}{\sqrt{\in_{0} \mu_{0}}}$	
	(c)	$ \sqrt{\epsilon_0 \mu_0} \\ \frac{\epsilon_0}{\mu_0} $	a as	(d)	$\sqrt{\epsilon_0/\mu_0}$	e a
8.	Elect	tron volt is a unit of -				1
	(a)	charge		(b)	momentum	15
	(c)	potential difference		(d)	energy	æ
9.	The r	nass of a photon at res	t is –			· I
	(a)	zero		(b)	$1.67 \times 10^{-35} \mathrm{Kg}$	
190	(c)	1 amu		(d)	$9 \times 10^{-31} \text{ Kg}$	¥9 ₹5
10.	Acco	rding to Bohr's principle	e, the relation b	etween princij	pal quantum numbe	r (n) and radius (r)
		bit is –	100	***************************************		1
	(a)	ran		(b)	ran²	
	(c)	$r\alpha\frac{1}{n}$		(d)	$ra\frac{1}{n^2}$	
HSS/	021			2	£ ³ ,8	Contd.
			ā.			

			82					
			(d)		æ g			
11.	Wh	nat is missing in the t	following nuclear rea	ction?	**	HS	S/02	
***	•••	What is missing in the following nuclear reaction?						
		1H ² +1	$_{1}\mathrm{H}^{2}_{2}\mathrm{H}e^{3}+\underline{\qquad}$	•	*			
	(a)	meson	**	(b)	electron			
	(c)	positron	38	(d)	neutron			
12.	The refractive index of water is 1.33. What will be the speed of light in water?							
	(a)	$3 \times 10^8 \text{ ms}^{-1}$	8	(b)	$2.26 \times 10^8 \mathrm{ms^{-1}}$			
	(c)	$4 \times 10^8 \text{ ms}^{-1}$		(d)	$1.33 \times 10^8 \text{ ms}^{-1}$			
13.	Rev	verse bias applied to	a junction diode -		3		1	
86	(a)	raises the potentia	ıl barrier		2	*		
	(b)	increases the major	ority carriers of curre	nt	æ			
	(c)	increases the mino	ority carriers of curre	nt				
	(d)	lowers the potentia	al barrier		*			
14.	Тоо	To obtain a p-type germanium semiconductor, it must be doped with -						
	(a)	Arsenic	\$	(p)	Antimony	85		
	(c)	Indium		(d)	Phosphorus	4	85.	
15.	(a)	A current of 5A is	flowing east to west i	n an infin	itely long wire kept alor	ng east-	west	
		direction. Find the	below the wire.	10	2			
*	3		OR	34		v.		
	(b) Define magnetic elements. The vertical component of earth's magnetic fi							
74	8:	NATIONAL PROPERTY OF THE PROPE	A PA		e value of angle of dip a	2006		
		38 138 153	2005 WAST		- 	AF 251.00A	2	
16.	Write	e the general equation	on for instantaneous e	emf of 50	Hz generator whose pe	ak volta	ige is	
6	200	10.10% VR		and the second section is a second			2	

17. A lamp of 100 W works at 220 Volt. What is its resistance and current capacity?

suitable for radar system used in aircraft navigation.

HSS/021

18. What are electromagnetic waves? Name the part of the electromagnetic spectrum which is

3

19.	(a)	The light of wavelength 6000 Å falls normally on a slit of width 2 mm. Cal	culate the			
3		linear width of central maximum on a screen kept 2 m away from the slit.	. 2			
18		OR	8¥ =\$6			
	(b)	Write any two differences between interference and diffraction.	2			
20.	Wha	is total internal reflection? Under what conditions does total internal reflection take				
	place? 1+1=2					
21.	Ехр	ain with the help of a circuit diagram how a junction diode acts as a half way	ve rectifier.			
22.	Defi	ne potential gradient. Obtain the relation between electric field and potential	gradient at			
	0.0	int in the electric field.	1+2=3			
23.	Hov	does resistivity depend on temperature of the conductor? A wire of resista	nce 1 Ohm			
15		retched to double its length. What is the new resistance?	1+2=3			
24.	(a)	Obtain the condition of balanced wheatstone bridge using Kirchoff's law.	3			
	5960V	OR				
	(b)	Define drift velocity. Derive the relation between drift velocity and electric	current. 3			
25.	Am	agnetic field of flux density 10 T acts normal to a coil of 50 turns having 100 cm	² area. Find			
	the	emf induced if the coil is removed from the magnetic field in 0.2 s.	3			
26.	Usi	ng Biot-Savart's law, derive an expression for magnetic field at the centre of	of a current			
2008		ying loop.	3			
27.	(a)	What is dispersion of light? Explain why, in a spectrum, violet light suff	fers greater			
/is		deviation than red light.	1+2=3			
-30		OR *				
	(b)	When a ray of light passes through a prism, show that the sum of the angle o	**			
e _y ×	* • •	the angle of deviation is equal to the sum of the angle of incidence and the	ne angle of			
		emergence.				
HS	S/021	4	Contd.			

			H33/UZ1			
28.	What is photoelectric effect? How is the photoelectric current affected on increasing the					
	(i) fre	equency and (ii) intensity of incident radiation?	1+1+1=3	İ		
29.	Explain what will happen to the focal length of a convex lens of refractive index 1.2, if it is					
	immersed in a liquid of refractive index 1.3.					
30.	If the	e energy of an electron in the n th orbit is given by $E_n = -\frac{13.6}{n^2}$ eV, determine	the energy			
		red to excite an electron from ground state to the second excited state.	3	1		
31.	(a)	Define electric field intensity. Derive an expression for electric field on e	equitorial			
8		line of an electric dipole.	1+4=5			
		OR		1		
	(b)	What is Gaussian surface? Derive an expression for electric field due to a	ın infinitely			
	、 /	long line charge having uniform charge density.	1+4=5			
32.	(a)	State the principle, construction and working of a transformer. Why is the	ne core of a			
J	(-)	transformer laminated?	1+3+1=5	1		
		OR				
	(b)	Define impedance of an LCR series circuit. Derive an expression for im-	pedance of	56		
		LCR series circuit.	1+4=5			
33.	(a)	Derive lens maker's formula for a thin convex lens stating the sign conven	ntions used.	orce		
JJ.	(a)	Delivered bronners of a second of the second	4+1=5	1		
		OR .		28		
20	(b)	Deduce the condition for constructive and destructive interference in You	ng's double			
	(0)	slit experiment.	5			
		*		• 1		
				i.		
				ļ		
HSS	/021	5	P.T.O.	0		

Physical constants:

$$\frac{1}{4\pi\varepsilon_0} = 9 \times 10^9 \,\mathrm{N}\,\mathrm{m}^2\mathrm{C}^{-2}$$

$$\varepsilon_0 = 8.854 \times 10^{-12} \,\mathrm{C}^2 \,\mathrm{N}^{-1}\mathrm{m}^{-2}$$

$$c = 3 \times 10^8 \,\mathrm{ms}^{-1}$$

$$e = 1.6 \times 10^{-19}\mathrm{C}$$

$$m_e = 9.1 \times 10^{-31} \,\mathrm{Kg}$$

$$m_p = 1.67 \times 10^{-27} \,\mathrm{Kg}$$

$$h = 6.62 \times 10^{-34}\mathrm{Js}$$

$$G = 6.67 \times 10^{-11} \,\mathrm{Nm}^2 \,\mathrm{Kg}^{-2}$$

$$g = 9.8 \,\mathrm{ms}^{-2}$$

$$1 \,\mathrm{A} = 10^{-10}\mathrm{m}$$

$$1 \,\mathrm{amu} = 931 \,\mathrm{MeV}$$

$$\mu_0 = 4\pi \times 10^{-7} \,\mathrm{TA}^{-1}\mathrm{m}$$